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Abstract. We study two different physical scenarios of thermonuclear reactions in stellar plasmas proceed-
ing through a narrow resonance at low energy or through the low-energy wing of a wide resonance at high
energy. Correspondingly, we derive two approximate analytical formulae in order to calculate thermonuclear
resonant reaction rates inside very coupled and non-ideal astrophysical plasmas in which non-extensive ef-
fects are likely to arise. Our results are presented as simple first-order corrective factors that generalize
the well-known classical rates obtained in the framework of Maxwell-Boltzmann statistical mechanics. As
a possible application of our results, we calculate the dependence of the total corrective factor with respect
to the energy at which the resonance is located, in an extremely dense and non-ideal carbon plasma.

PACS. 24.30.-v Resonance reactions – 26.50.+x Nuclear physics aspects of novae, supernovae, and other
explosive environments – 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear
dynamical systems

1 Introduction

Cussons, Langanke and Liolios [1] proposed, on the basis
of experimental measurements at energy E ∼ 2.4MeV,
that the resonant behavior of the stellar 12C + 12C fu-
sion cross-section could continue down to the astrophysical
energy range, thus leading rise, beside the usual Debye-
Hückel screening [2] (whose corrective factor is fS), to
a further plasma resonant screening effect (convention-
ally described by a suitable fRS factor). While fS > 1
enhances the reaction rate, it has been pointed out that
fRS < 1, i.e. the resonant screening effect is likely to re-
duce the rate. The reduction of the resonant rate due to
a resonant screening correction amounts to 11 orders of
magnitude at the resonant energy of 400 keV, influencing
the carbon ignition density in white dwarfs. Itoh et al. [3]
have shown that, using an effective screening potential ob-
tained by one-component–plasma (OCP) Monte Carlo ex-
periments, the overall effect does indeed strongly enhance
the carbon-carbon reaction rate by a considerable amount
(i.e. fT ≡ fS · fRS À 1) because of the global screening
domination that amounts to an enhancement of the rate
by 12 orders of magnitude, with important implications
for hydrostatic burning in carbon white dwarfs. Given the
12C + 12C reaction, the current hypothesis [1] is that the
entrance channel width is much smaller than the total
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resonance width, the latter being much smaller than the
resonance energy. The same picture could possibly apply
to other fusion reactions between medium-weighted nuclei
(e.g., to the 16O+ 16O reaction, which could be an active
burning stage in some white dwarfs [4]).

The previous discussion refers to extremely dense stel-
lar plasmas, characterized by a temperature T ∼ 108 K,
a mass density ρ ∼ 109 g · cm−3 and a plasma parameter
Γ < 178. In these physical conditions, we expect that
non-extensive effects could also arise. We briefly recall
that such plasmas show deviations from the several as-
sumptions that are the basis of Maxwell-Boltzmann dis-
tribution. Long-range many-body nuclear correlations and
memory effects, among others, can be sufficient to justify
the use of a distribution function which slightly deviates
from the standard Maxwell-Boltzmann one [5] (see also,
for example, ref. [6] for a discussion on physical conditions
in which non-extensivity needs to be taken into account).
Our aim is to derive a simple first-order formula in order
to express non-extensive corrections for reactions proceed-
ing through narrow resonances: we will consider this case
in subsect. 3.1.

In addition to the above resonant reactions in white
dwarfs, let us mention few resonant reactions occurring in
the stellar interior (like the Sun interior), where no car-
bon burning is active. It is well known that, along with
the reactions of the proton-proton chain, many reactions
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of the CNO cycle are presently believed to be non-resonant
at the relevant stellar energies around the maximum E0

of the Gamow peak (whose order of magnitude is E0 ∼
10 keV inside the Sun’s core). However, the 17O(p, α)14N
reaction, which belongs to the CNO-II subcycle, shows a
very narrow resonance (18F being the compound nucleus)
located at an energy between 65 keV and 75 keV, with
a proton partial width Γp ' 22 neV; this might be taken
into account when solar-model calculations are carried out
(see [7] and references therein). Moreover, one could ac-
tually point out that many non-resonant reactions in the
CNO cycle proceed indeed through the low-energy wing
of a wide resonance located at energy ER À E0, as was
already observed by Clayton [8] (among others, we recall
also the 14N(p, γ)15O reaction; its S factor has been very
recently measured by the LUNA group [9]). In this case,
we could adopt a very reliable resonant formalism that al-
lows us to evaluate the astrophysical factor of the reaction
at the Gamow peak energy, S(E0), by relying exclusively
on the experimental data of the resonance at the relatively
high energy ER.

For the sake of completing this discussion, let us con-
sider the 12C(p, γ)13N reaction (CNO-I subcycle). At its
Gamow energy in the Sun, E0 = 24.68 keV, this reac-
tion seems to be non-resonant [10], but it shows a wide
resonance at energy ER = 424 keV À E0, with a total
width ΓT ' 40 keV, and an electromagnetic channel width
Γγ ' 0.77 eV. It is an easy matter to express the astro-
physical factor S(E0) by means of ER, ΓT and Γγ only,
through a Breit-Wigner approximation formula [11].

As has been pointed out (see, for example, refs. [12,
13]), a very slight non-extensive deformation could also
arise in the Sun interior: we will derive a first-order non-
extensive corrective factor for nuclear reactions proceed-
ing through the low-energy wing of a wide resonance in
subsect. 3.2.

From the previous discussion it follows that it is useful
to develop an analytical theory dealing with reactions that
proceed through narrow or wide resonances; this work was
already achieved in ref. [8]. In this paper we extend the
known classical results to the case in which non-extensive
corrections arise, and we present a possible application to
the 12C+ 12C reaction in a white dwarf’s plasma.

2 Classical resonant reaction rates

In this section, we briefly review some of the known re-
sults about the analytical reaction rate calculations in as-
trophysical plasmas, that were obtained in the framework
of the classical Maxwell-Boltzmann statistics (MB) [8,10].

Let us consider a thermonuclear reaction between two
nuclei i and j. We define the classical reaction rate, rMB

ij ,
by

rMB
ij =

NiNj

1 + δij
〈vijσij〉MB =

NiNj

1 + δij

∫ +∞

0

φMB(E)vij(E)σij(E)dE, (1)

where Ni, Nj are the particle densities, E is the relative
energy (in the center-of-mass frame of reference) at which
the reaction occurs, vij is the relative velocity between
two fusing nuclei, σij is the reaction cross-section, φMB is
the Maxwell-Boltzmann energy distribution function, and
δij = 1 if nuclides i and j are identical, δij = 0 otherwise.

As far as resonant reactions are concerned, we can dis-
tinguish two different cases of physical interest. Let ER

be the resonance energy, E0 the Gamow energy and ΓT

the total resonance width. If the following conditions are
satisfied,

{

ER ≈ E0,

ΓT ¿ ER,
(2)

the reaction proceeds through a narrow resonance at low
energy (this case will be labelled as “r”). The 12C + 12C
reaction occurring inside a white dwarf, beside the hy-
potheses already discussed in sect. 1, belongs to this first
scenario.

On the contrary, if the following inequalities are satis-
fied,

{

ER > E0 or ER À E0,

ΓT > E0,
(3)

the resonance is said to be a wide resonance (this case will
be labelled as “R”). The 12C(p, γ)13N reaction inside the
Sun belongs to this second scenario.

2.1 Narrow resonances at low energy (MB, r)

If the conditions in eq. (2) hold, the approximate reaction
rate reads [8]

rMB,r
ij = (2π)3/2

NiNj

1 + δij

ωij h̄
2

(µijkBT )3/2

×
Γin(ER)Γout

ΓT

exp

(

−
ER

kBT

)

, (4)

where Γin(ER) is the entrance channel width, Γout is the
exit channel width, ΓT ∼ Γin +Γout is the total resonance
width, kBT is the plasma thermal energy and µij is the
reduced mass of the two-body system i+ j. In eq. (4), the
quantum factor ωij is defined by [14]

ωij =
2JC + 1

(2Ji + 1)(2Jj + 1)
,

where JC is the total quantum angular momentum of the
compound nucleus and Ji, Jj are the spin numbers of the
interacting nuclei i and j.

2.2 Wide resonances (MB, R)

If the physical conditions in eq. (3) hold, the approximate
reaction rate now reads [8]

rMB,R
ij =

23/2π

31/2

NiNj

1 + δij

ωij h̄
2E

1/2
0

µ
3/2
ij kBT

×
ΓinΓout

(E0 − ER)2 + (ΓT/2)2
exp

(

−
3E0

kBT

)

. (5)
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Equation (5) has been obtained by writing the astro-
physical factor Sij as

Sij(E) =
π

2

h̄2

µij

ωijΓinΓout

(E − ER)2 + (ΓT/2)2
, (6)

through a well-known Breit-Wigner approximation for-
mula, which is supposed to hold if the energy E is close
to the resonance energy ER.

3 Non-extensive resonant reaction rates

In refs. [5,6,13] it has been shown that a coherent model
describing a given stellar core might deal with slightly cou-
pled plasmas, non-Markovian random walks, many-body
collisions and memory effects. From this point of view, the
classical theory founded on the Maxwell-Boltzmann statis-
tical mechanics should be considered a first-order approx-
imation (a very good one indeed inside the Sun’s core).
A further approximation, to which we are referring from
now on, lies on the more general picture of non-extensive
statistical mechanics [15,16].

Here we limit ourselves to briefly outline, by means
of three different approaches, how non-standard statistics
can arise. In the Fokker-Planck equation context, we can
introduce corrections to the friction and diffusion coeffi-
cients, considering their expressions to the next order in
the velocity variable; a stationary solution is the Tsal-
lis non-extensive distribution. In a plasma, each particle
is affected by the total electric field distribution of the
other charges; the total microfields have a relatively small
random component, generally show long-time correlations
and generate anomalous diffusion. All these effects imply a
deviation from the Maxwell-Boltzmann distribution whose
entity depends on the plasma parameter and on an ion-ion
correlation parameter. Correlations among the collective
modes can lead to a long-time asymptotic behavior of the
velocity correlations of the ions and to anomalous diffu-
sion, that are related to generalized entropy and generate
non-Maxwellian probability distributions.

In this new picture, the reaction rates are defined in
the same way as in eq. (1), but now the non-extensive
energy distribution function φNE(E) is used, instead of
the usual Maxwell-Boltzmann distribution φMB(E).

It has been shown [6,12,13] that the analytical rela-
tionship linking φNE and φMB can be cast, to first order
of approximation, in the following fashion:

φNE(E) =

(

1 +
15

4
δ

)

φMB(E) exp

[

−

(

E

kBT

)2

δ

]

, (7)

provided that |δ| ¿ kBT/E (or |δ| ¿ kBT/E0, for com-
putational purposes). The order of magnitude of the de-
formation parameter δ is 10−3–10−2 inside the Sun, but it
can be higher in extremely dense stellar plasmas (e.g., in
white dwarfs). The δ-parameter is linearly related to the
q entropic parameter that appears in the non-extensive
formalism [15]: the relationship between them two is δ =
(1− q)/2.

We can distinguish two physically relevant cases: if
δ < 0, the high-energy tail of the φNE distribution function
is increased with respect to φMB (super-extensivity), while
if δ > 0, the high-energy tail is depleted (sub-extensivity).

Now we are able to develop the entire non-extensive
resonant formalism of the thermonuclear reaction rates.

3.1 Narrow resonances at low energy (NE, r)

From eqs. (1) and (7), the non-extensive rate of a given
reaction proceeding through a narrow resonance at low
energy reads

rNE,r
ij =

NiNj

1 + δij

(

1 +
15

4
δ

)
∫ +∞

0

φMB(E)

×vij(E)σij(E) exp

[

−

(

E

kBT

)2

δ

]

dE. (8)

Starting from the hypotheses in eq. (2) we can state
that, in the energy interval ER − ΓT < E < ER + ΓT, the
integral in eq. (8) is strongly ruled by the reaction cross-
section function σij(E) only. Thus we can write, with very
good approximation, the following result:

rNE,r
ij = rMB,r

ij

(

1 +
15

4
δ

)

exp

[

−

(

ER

kBT

)2

δ

]

. (9)

If |δ| ¿ (kBT/ER)
2, we can linearize eq. (9), and the

first-order formula is

rNE,r
ij = rMB,r

ij [1 + C1(kBT,ER)δ], (10)

where

C1(kBT,ER) =
15

4
−

(

ER

kBT

)2

.

Therefore, our final result in the case of narrow reso-
nances at low energy is expressed by

rNE,r
ij = rMB,r

ij

[

1 +
15

4
δ −

(

ER

kBT

)2

δ

]

. (11)

If the condition

ER

kBT
≈

E0

kBT
>

√

15

4
' 1.936 (12)

is satisfied, then C1(kBT,ER) < 0. In the Sun interior, the
thermal energy is kBT ' 1.36 keV and E0 is in the energy
interval 24 keV < E0 < 29 keV for the CNO cycle, and
E0 ≈ 6 keV for the p+ p→ d+ e+ + νe reaction. Thus, in
the Sun’s core, and in many other stellar plasmas of inter-
est, eq. (12) is always satisfied; then, from eq. (10), we can
actually state that the non-extensive rate is increased or
diminished with respect to the classically calculated rate,
whether δ < 0 or δ > 0 (as already mentioned in sect. 3).
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3.2 Wide resonances (NE, R)

In the case of a generic reaction (no matter if resonant or
not), the following formula linking rNE

ij and rMB
ij holds:

rNE
ij =rMB

ij

Sij(Ẽ0)

Sij(E0)

(

1+
15

4
δ−

7

3
δ
E0

kBT

)

exp(−∆ij), (13)

where

∆ij ≡ ∆ij(δ, Ẽ0) = −
3E0

kBT

×



1−

(

1+
5

3
δ
Ẽ0

kBT

)(

1+2δ
Ẽ0

kBT

)

−2/3


 , (14)

and

Ẽ0 = E0

(

1 + 2δ
Ẽ0

kBT

)

−2/3

. (15)

Equations (13) and (14) express the first-order cor-
rection to the classical reaction rate rMB

ij , due to the de-
formed distribution function that has been already defined
in eq. (7). Besides, eq. (15) shows implicitly the relation-

ship between the new (deformed) Gamow energy Ẽ0, and
the classical one E0. A complete proof of these equations
can be found in ref. [12], in which the authors started from
an ad hoc assumption of the deformed distribution func-
tion, φNE(E), regardless of any statistical basis. In this
paper, we adopt the same results, but lying on the ground
of non-extensive statistical mechanics (as was outlined, for
example, in ref. [13]).

In eq. (13), the physical properties of the reaction are
summarized in the ratio between the astrophysical factor
at the new Gamow energy, Sij(Ẽ0), and the same factor
at E0 energy, Sij(E0). Our aim is to express that ratio as
a function of ER and ΓT only. The deformation parameter
δ is assumed to satisfy the following inequality:

|δ| ¿
kBT

E0

. (16)

Then we can write, as a formal expansion in δ,

Sij(Ẽ0) ≈ S0 + S1δ . (17)

By writing eq. (17), we have substantially relied upon
the physical properties already stated in eq. (3), that ex-
plicitly define the wide-resonance scenario. The conditions
E0 ¿ ER (and thus Ẽ0 ¿ ER) and ΓT > E0 allow us to
expand the astrophysical factor Sij(E) as a formal series
in δ, retaining first order only; in fact, in this case, its
functional dependence on energy is moderate, at least in
the low-energy wing of a broad resonance at high energy
(Sij is almost constant). This situation is very similar to
the non-resonant formalism for which eq. (17) is a suitable
approximation.

Before proceeding, we want to give some emphasis to
the following point: eq. (17), together with subsequent cal-
culations, cannot apply to narrow resonances for which

conditions in eq. (2) hold, because in this case Sij(E)
shows a strong dependence on energy, being a resonant
function itself and, as a consequence, a linear theory lying
on eq. (17) is not appropriate any more. It would be neces-
sary a complete knowledge of Sij(E), in order to apply the
formalism that we are developing here to a narrow reso-
nance; that is the main reason why we adopted a different,
but far simpler, treatment for this case, as was previously
discussed in subsect. 3.1. Therefore the result we are ob-
taining in this subsection cannot produce, as a particular
case, the result for the narrow resonance.

Now we can look for an analytical expression for the
two coefficients S0 and S1 appearing in eq. (17). From
eq. (6), we immediately obtain that

S0 = Sij(E0) =
π

2

h̄2

µij

ωijΓinΓout

(E0 −ER)2 + (ΓT/2)2
. (18)

On the contrary, the first-order coefficient in eq. (17)
reads

S1 = −πωij
h̄2

µij

(E0 − ER)ΓinΓout

[(E0 − ER)2 + Γ 2
T
/4]2

dẼ0

dδ

∣

∣

∣

∣

∣

δ=0

. (19)

In order to calculate the analytical expression for the
dẼ0/dδ|δ=0 derivative, we differentiate both members of
eq. (15) with respect to δ, obtaining

dẼ0

dδ
= −

4

3

E0

kBT

(

Ẽ0 +
dẼ0

dδ
δ

)(

1 + 2δ
Ẽ0

kBT

)

−5/3

,

from which, without any approximation, it follows that

dẼ0

dδ

∣

∣

∣

∣

∣

δ=0

= −
4

3

E2
0

kBT
. (20)

Now we can rewrite eq. (17), using the results of eqs. (18)
and (20), as

Sij(Ẽ0) ≈ Sij(E0)

(

1 +
S1

S0

δ

)

and then, the Sij(Ẽ0)/Sij(E0) ratio eventually becomes

Sij(Ẽ0)

Sij(E0)
= 1 +

8

3
δ

(E0 − ER)E0

(E0 −ER)2 + Γ 2
T
/4

E0

kBT
. (21)

Placing the previous result of eq. (21) into eq. (13), it
is clear that the non-extensive reaction rate, to first order,
reads

rNE,R
ij = rMB,R

ij exp(−∆ij)

[

1 +
15

4
δ −

7

3
δ
E0

kBT

+
8

3
δ

(E0 − ER)E0

(E0 − ER)2 + Γ 2
T
/4

E0

kBT

]

. (22)

A further approximation, under the hypothesis stated
in eq. (16), is

exp(−∆ij) ≈ 1−

(

E0

kBT

)2

δ ,
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and therefore, from eq. (22), the final result immediately
follows

rNE,R
ij = rMB,R

ij

[

1 +
15

4
δ −

7

3
δ
E0

kBT
−

(

E0

kBT

)2

δ +

+
8

3
δ

(E0 −ER)E0

(E0 − ER)2 + Γ 2
T
/4

E0

kBT

]

. (23)

4 Conclusions and discussion

In this work we have analytically derived two first-order
formulae that can be used to express the non-extensive
reaction rate as a product of the classical reaction rate
times a suitable corrective factor for both narrow and wide
resonances, as shown in eqs. (11) and (23). It should be
stressed that the previous results are correct only if |δ|
is very small (in the sense of eq. (16)), namely if we are
dealing with slight deformations of the energy distribution
function. This is really the most common situation, as
far as astrophysical plasmas are concerned (in fact |δ| ∼
10−3–10−2).

Concerning the fusion reactions between two medium-
weighted nuclei, for example the 12C + 12C reaction, our
non-extensive factor, which now can be formally defined
as follows.

fNE = 1 +
15

4
δ −

(

ER

kBT

)2

δ ,

gives rise to a further correction beside the screening
and the potential resonant screening, already investigated
in [1] and [3].

It is important to point out that the non-extensivity
does not affect the other plasma corrections: therefore, we
can define an effective factor F as

F = fNE · fS · fRS , (24)

where fS and fRS account for the Debye-Hückel screening
and the resonant screening effect, respectively.

We have applied our results to a physical model de-
scribing a carbon white-dwarf’s plasma, with a temper-
ature of T = 8 · 108 K and a mass density of ρ =
2 ·109 g · cm−3 (the plasma parameter is, correspondingly,
Γ ' 5.6). Furthermore, we have set a deformation param-
eter |δ| = 10−3, regardless of its sign, and we have kept the
energy of the possible resonance, ER, as a free parameter.

In fig. 1, we plot the total corrective factor defined in
eq. (24) against the energy at which the narrow resonance
is supposed to be located, in the range between 0 keV and
2400 keV, considering three very different conditions (de-
pending on the sign and value of the deformation param-
eter δ). In our calculations, in order to estimate the func-
tional dependence of fS · fRS with respect to ER, we have
adopted the fitting formulae derived by Itoh and collab-
orators [3]: their result, that has been derived through a
classical treatment, is also shown in fig. 1 by the line la-
belled with δ = 0. From the same figure, it is clear that

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

200

400
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800

1000

1200

E
R

 (keV)

F

δ=0 (classical) 

δ<0 

δ>0 

Fig. 1. Linear plot of the effective factor F , defined in eq. (24),
against the resonance energy ER. The dash-dotted (upper)
line refers to super-extensivity, the dashed (lower) line to sub-
extensivity, while the solid (middle) line describes the classical
(MB) result.

a slight non-extensivity does introduce non-trivial correc-
tions that become more and more important as the res-
onance energy rises: if δ > 0, our total effective factor is
F ' 136 at ER = 2.4MeV, while, at the same resonance
energy, the factor is F ' 1484 if δ < 0. Anyway, in both
cases, limF = 1 when ER → 0 keV. It is also noteworthy
that the effective factor always acts to enhance the res-
onant reaction rate, no matter if the system is super- or
sub-extensive. In conclusion, all the plasma enhancements
due to the presence of long-range many-body nuclear cor-
relations and memory effects, that can be described within
the non-extensive statistics by means of the entropic pa-
rameter q > 1 (δ < 0), are in the direction of still more
increasing the effective factor F of nuclear rates of hydro-
static burning and white-dwarfs environment.

References

1. R. Cussons, K. Langanke, T. Liolios, Eur. Phys. J. A 15,
291 (2002).

2. E.E. Salpeter, H.M. Van Horn, Astrophys. J. 155, 183
(1969).

3. N. Itoh, N. Tomizawa, S. Wanajo, S. Nozawa, Astrophys.
J. 586, 1436 (2003).

4. S. Balberg, S. Shapiro, The properties of matter in white

dwarfs and neutron stars, in Handbook of Elastic Proper-

ties, edited by H. Bass, V. Keppens, M. Levy, R. Raspet
(Academic Press, New York, 2003).

5. A. Lavagno, P. Quarati, Phys. Lett. B 498, 47 (2001);
Chaos, Solitons, Fractals 13, 569 (2002).

6. G. Kaniadakis, A. Lavagno, M. Lissia, P. Quarati, Physica
A 261, 359 (1998).

7. E.G. Adelberger et al., Rev. Mod. Phys. 70, 4 (1998).
8. D.D. Clayton, Principles of Stellar Evolution and Nucle-

osynthesis (University of Chicago Press, Chicago, 1968).



534 The European Physical Journal A

9. LUNA Collaboration (A. Formicola et al.), nucl-
ex/0312015.

10. C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos

(Chicago Press, Chicago, 1988).
11. M.S. Hussein, M. Ueda, A.J. Sargeant, M.P. Pato, nucl-

th/0307083.
12. D.D. Clayton, E. Dwek, M.J. Newman, R.J. Talbot jr.,

Astrophys. J. 199, 194 (1975).

13. M. Coraddu et al., Braz. J. Phys. 29, 153 (1999).
14. J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics

(Dover, New York, 1991).
15. C. Tsallis, Braz. J. Phys. 29, 1 (1999).
16. M. Gell-Mann, C. Tsallis (Editors), Non-extensive Entropy

- Interdisciplinary Applications (Oxford University Press,
Oxford, 2003).


